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• PFBA was the most abundant PFAAs in
Tianchi lake.

• Higher levels of PFAAs were observed
from sites near scenic spots and ski re-
sort.

• The profile of PFAAs in snowwas highly
correlated with that in water and soil.

• Two sources were identifiedwith domi-
nances of PFOA and PFBA, respectively.
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Perfluoroalkyl acids (PFAAs) are ubiquitous in the global environment, even in remote regions. With increasing
production and application of PFAAs in China, their distribution patterns have been widely reported, however
with less attention to inland northwestern regions. Long-range transport and direct releases from local activities
have been regarded as themain reasons for PFAAs distribution in such a remote area. To identify and quantify the
contributions of different sources to PFAAs occurrences, an investigation was conducted in the Tianchi lake, na-
ture reserve. A total of 20 water samples, 8 soil, 4 sediment and 10 fresh snow samples were collected and ana-
lyzed in 2015. The mean PFAAs concentrations were 3.38 ng L−1 in surface water, 1.06 ng g−1 dw in soil,
0.53 ng g−1 dw in sediment, and 3.31 ng L−1 in fresh snow, respectively. High levels of PFAAs were observed
in surface water (15.41 ng L−1) from Western Tianchi pond and surface snow (14.24 ng L−1) from the site
near a ski resort around Tianchi Lake indicating potential pollution by local human activities. The correlation be-
tween individual concentrations among water, soil and snow indicated the snow deposition as an important
source. Although with limited sample size, principal component analysis associated with multiple linear regres-
sion (PCA-MLR) and positive matrix factorization (PMF) analyses have identified two major sources, which are
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characterized as tourism activities with dominance of perfluorooctanoic acid (PFOA) and long-range transport
with abundant perfluorobutanoic acid (PFBA). Their contributions to total levels were 41% and 52%, respectively.
These two sources contributed differently to the PFAAs presences in Tianchi and Western Tianchi Lakes. Source
analysis indicates that the western Tianchi lake with a relatively small catchment was affected mainly by local
activities.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Perfluoroalkyl acids (PFAAs) are a group of anthropogenic chemicals
known for their desirable properties of high surface tension/leveling,
hydrophobicity, lipophobicity, and chemical and thermal resistance
(Giesy and Kannan, 2001; Giesy and Kannan, 2002). Since the 1950s,
PFAAs have been widely applied in consumer and industrial products
such as cosmetics, leather, waxes, semiconductor, oil/liquid repellents,
firefighting foams, pesticides and food packaging materials (Kissa,
2001; Lindstrom et al., 2011). With a growing concern about their po-
tential bioaccumulation and toxicity, several PFAAs have been subjected
to restriction and regulation in Europe and United States (OECD, 2002;
USEPA, 2006). In 2000, 3 M company (the then largest manufacturer)
phased out its production of PFAAs products and their precursors (3M,
2000). Following that, international regulatory efforts have been made
to restrict the use and production of these chemicals (UNEP, 2009,
2018). Despite the ban in developed world, the production, use and ul-
timate releases of PFAAs chemicals into the environment is still taking
place in fast developing countries like China and India (Moller et al.,
2010; Xie et al., 2013a, 2013b).

Due to their wide application and historical production, PFAAs are
ubiquitously distributed in abiotic and biotic media (Giesy and
Kannan, 2001; Prevedouros et al., 2006; Marcus et al., 2013; Liu et al.,
2016, 2017; Su et al., 2017). Even in remote areas, such as Arctic
(Martin et al., 2004; Stock et al., 2007; Wong et al., 2018) and Alpine
Mountains (Shi et al., 2010; Kirchgeorg et al., 2013), PFAAs have been
observed. Previous studies have presented two hypothesized transport
pathways, namely indirect and direct routes, to explain how PFAAs
reach the remote areas with different contributions in different areas
(Stock et al., 2007;MacInnis et al., 2017). The indirect pathway suggests
that volatile and semi-volatile precursors, such as fluorotelomer alco-
hols (FTOHs) and perfluorinated sulfonamides (FOSAs), through atmo-
spheric transport, would be subsequently degraded to several PFAAs
through abiotic and biotic processes (Ellis et al., 2004; Martin et al.,
2006; Urs et al., 2008; Young and Mabury, 2010; Vento et al., 2012).
The dominant contribution of FTOHs observed in precipitation and air
samples in remote regions have proved this hypothesis (Scott et al.,
2006; Gawor et al., 2014; Xie et al., 2015; Zhao et al., 2017).With the di-
rect transport, PFAAs are transferred to remote area via both the atmo-
sphere and oceanic water currents (Konstantinos et al., 2010). The
PFAAs that released directly from consumer products and production
processesmight be boundedwith particles and scavenged to the ground
bywet/dry deposition (Dreyer et al., 2010). A variety of PFAAswith high
mobility and persistence, such as PFOA, PFOS and perfluorohexane sul-
fonate (PFHxS), have been wildly detected in the street/indoor dusts
(Harada et al., 2005; Murakami and Takada, 2008; Dreyer et al., 2015;
Su et al., 2016), arctic and global atmosphere (Prevedouros et al.,
2006; Stock et al., 2007), indicating direct transport as an important
source. Both direct and indirect sources have been reported to contrib-
ute to PFAAs occurrence in the environment and wildlife in remote re-
gions (Casal et al., 2017; Li et al., 2017; Routti et al., 2017). However,
their relevance to the regional environment for the various PFAAs re-
mains unclear.

Since China has become the main producer and consumer of PFAAs,
many investigations have been conducted, howevermost of them are in
eastern region where populated cities and major manufacturers are
located, with limited reports on remote area (Zhen et al., 2013; P.
Wang et al., 2014; T. Wang et al., 2015). Few studies in Tibetan Plateau
have observed PFAAs accumulation in snow and ice core, and the results
suggested a different composition from varied sources (X. Wang et al.,
2014; Wu et al., 2016; Li et al., 2017). Previous studies have reported
the significance of long-range transport to the PFAAs deposition in
Xinjiang region, showing varied levels of PFAAs in cattle, drinking
water and snow (G. Wang et al., 2017; Li et al., 2019; Wang et al.,
2019). Recent studies have shown that there is likely a shift toward
short-chain chemicals in remote areas globally, which is consistent
with the transition in PFAAs production (Holt, 2011; Kirchgeorg et al.,
2013; Oliaei et al., 2013). Short-chain PFAAs are similarly persistent as
their long-chain homologues (Young and Mabury, 2010; Z. Wang
et al., 2015), and are likely to be transported over long distances
(Brendel et al., 2018). Due to the phase-out of long-chain PFAAs, the re-
leases and production of short-chain PFAAs are expected to increase in
the future. This may lead to continuous accumulation in remote regions
(Kirchgeorg et al., 2016). Thus, further investigations are needed to ex-
plore the occurrence of PFAAs in these areas.

Tianchi Lake (TC), an alpine cold water lake located in Tianshan
Mountains, is known as theWorld Heritage Site and Biosphere Reserve
and also serves as an important drinking water source (Wen et al.,
2016). This region had been affected by intensive grazing activities. For-
tunately, the region has been protected by the implementation of graz-
ing banning since 2005. However, tourism activities have increased
since the 1970s, with an increase of 0.8 million visitors per year (Wen
et al., 2016), resulting in the potential emission of chemicals from com-
mercial products. This study aims to investigatewhy Tianchi Lakewhich
is far from production and industrial input could end up being polluted
by PFAAs chemical, and to find out the role of different sources to the
environmental occurrence of PFAAs. To address these questions, a com-
prehensive investigation of the PFAAs in water, sediment, soil and snow
was conducted in Tianchi region, and the contributions of potential
sources were evaluated by statistical approaches.

2. Material and methods

2.1. Site description and sampling

Tianchi Lake is located at the middle of the eastern TianshanMoun-
tains, Xinjiang Autonomous Region in northwestern China (Fig. 1). It is a
moraine lake receiving snow/ice-melt water from surrounding alpine,
e.g. Bogda Peak (5445m). The total core area of the Xinjiang Tianchi Na-
ture Reserve is approximately 60 km2with the longitude 88°00′–88°20′
E and latitude 43°45′–43°59′N in the hinterland of Eurasian continent
(UNESCO, 2013). Tianshan Mountains stretch from west to east and
block the atmospheric circulation, which leads to a flushing precipita-
tion in this area (Shi et al., 2007).

A sampling campaign of surface water, sediment and soil was con-
ducted in the Tianchi Nature Reserve in October 2015 during a season
of little or no melting and or icing. A total number of 20 water samples
were taken from Tianchi Lake (TC) and two adjacent ponds, Eastern
Tianchi (ETC) and Western Tianchi (WTC). Two sediments were also
obtained during water sampling in both TC and WTC. Eight uniformly
distributed sites were chosen to investigate PFAAs levels in surface
soil. In November 2015, 10 fresh snow samples were collected after



Fig. 1. Study area and sampling sites in Tianchi Lake, northwestern China. Five-day back trajectory result of three-layer air flow.
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precipitation. Surface water (top 1–20 cm) and snow samples were col-
lected using 1 L polypropylene (PP) bottles. Soil and sediment samples
were stored in two-layer PP bags. All the samples were transported in
ice box to the lab. Before analyzing, sediment and soil were freeze-
dried and ground through 2 mm mesh. Snow samples were left at
room temperature tomelt to aqueous phase. All sampleswere extracted
within 2 weeks after arriving in the lab and the leftovers were kept at
−20 °C for long-term storage.

2.2. Chemicals and reagents

Perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA),
perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA),
perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA),
perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA),
perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid
(PFTrDA), perfluorotetradecanoic acid (PFTeDA),
perfluorohexadecanoic acid (PFHxDA), perfluorooctadecanoic acid
(PFOcDA), potassium perfluorobutanesulfonate (PFBS), sodium
perfluorohexanesulfonate (PFHxS), potassium
perfluorooctanesulfonate (PFOS), sodium perfluorodecanesulfonate
(PFDS) and 9 mass-labeled PFAAs were used for preparing mixture
standard solutions (Table S2). All stock standards and solutions were
prepared in methanol and stored at 4 °C. Milli-Q water was used
throughout the experiment for rinsing and dilution.

2.3. Sample preparation and chemical analysis

A total of 17 PFAAs including 13 perfluoroalkyl carboxylic acids
(PFCAs) and 4 perfluoroalkane sulfonic acids (PFSAs) were analyzed
(Table S2). A volume of 1 L unfiltered water or snowmelt was extracted
by solid-phase extraction (SPE) processes with OASIS WAX cartridges
(Taniyasu et al., 2005). Prior to extraction, water or snowmelt samples
were spiked with 5 ng mass-labeled standards. The cartridges were
preconditioned with 4 mL of 0.1% NH4OH in methanol, 4 mL of metha-
nol, and 4 mL of Milli-Q water in sequence. After loading the sample
at approximately 1–2 drops per second, cartridges were washed with
4 mL 25 mM ammonium acetate (pH = 4) and then air-dried. Target
analytes were then eluted by 4 mL of methanol and 4 mL of 0.1%
NH4OH in methanol. The sample volume was reduced to 1 mL under a
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gentle stream of high purity nitrogen. The concentrated samples were
filtered through a nylon filter (0.22 μm) and transferred into a 1.5 mL
vial for instrumental analysis.

Sediment and soil samples were extracted by alkaline digestion and
ultra-sonic extraction method (Loi et al., 2011). Aliquots of 2.5 g dry
sediment or soil were spiked with 5 ngmass-labeled internal standards
in a 50 mL PP centrifuge tube. The samples were then digested with
2 mL of 100 mM NaOH in methanol (8:2/MeOH:Milli-Q water), and
ultra-sonicated for 30 min. Twenty millimeters of methanol were
added into the mixture and shaken for 30 min at 250 rpm. After pH ad-
justment with 0.1 mL of 2 M HCl, the samples were centrifuged at
3000 rpm for 10 min. The extraction procedure was repeated twice.
The supernatants were combined into a new 50 mL tube and concen-
trated to 1 mL under a gentle stream of high purity nitrogen. After
cleanup by ENVI-Carb cartridges, the extracts were diluted in 100 mL
Mili-Q water and subjected to the same procedure as water samples.

A high-performance liquid chromatography equipped with a triple-
quadrupole mass spectrometer system (Agilent Technologies, Palo Alto,
CA) was used for PFAAs qualification and quantification. The details of
the extraction processes, as well as the instrument conditions were
given in the Supplementary Information.
2.4. Quality assurance and quality control (QA/QC)

During the procedure, the usage of materials containing any
polytetrafluoroethylene (PTFE) or fluoropolymer was avoided. The bot-
tles or tubes used in analysis were all pre-rinsed by both Milli-Q water
andmethanol. To check the potential contamination,field blanks, trans-
port blanks, procedure blanks and solvent blanks were conducted. All
the PFAAs were below the Limit of Quantification (LOQ) in the blanks.
The standard calibration curves with series concentrations of 0.01,
0.05, 0.1, 0.5, 1, 5, 10 and 50 ng/mLwere used for quantification, and re-
gression coefficients (r2) of calibration curves for all target analytes
were over 0.99. Limit of detection (LOD) was set as 3 times of signal-
to-noise ratio (S/N), and LOQ was defined as 10 times of S/N ratio.
Two kinds of recovery tests were performed (Table S4). The matrix
spike recoveries ranged from 72% to 125%. Detailed QA/QC results
were given in the Supplementary Information.
2.5. Statistical analyses and source partition method

The SPSS 24 software was used for statistical analysis, and signifi-
cance was set to p b 0.05. Concentrations below LOD were assigned as
LOD/

ffiffiffi

2
p

, and concentrations below LOQ but above LOD were assigned
as half of LOQ for calculations. The Kolmogorov–Smirnov and Shapiro-
Wilk tests have been conducted to test the normality of the data distri-
bution, and a Spearman correlation analysis was used to examine the
possible correlations amongPFAAs levels. Two commonly used receptor
models, including principal component analysis associated with multi-
ple linear regression (PCA-MLR) and positive matrix factorization
(PMF), were used for source identification and apportionment, since
the methods do not require the detailed information of mass flow and
are easy to apply (Hopke, 2003; Sofowote et al., 2008; Furl et al.,
2011). To further identify the atmospheric transport patterns, air
masses were analyzed using back trajectories from HYSPLT model
(Draxler and Rolph, 2013). Five-day back trajectories of three layers'
air mass flows were calculated every 6 h during the time of snow sam-
pling (Fig. 1). Partition coefficient (K) was calculated for each PFAAs to
evaluate the partition behavior. Detailed information for thesemethods
and results were given in Supplementary Information.
3. Results and discussion

3.1. Occurrence and distribution of PFAAs in Tianchi Lake

3.1.1. PFAAs in surface water
Among the 17 determined PFAAs, a total of 11 PFAAs were detected

(Table. S5). The predominant compounds in aqueous phase were PFBA
(0.10–8.16ng L−1) andPFOA(bLOD~3.38 ng L−1), and their proportions
of the total concentrationwere 11–89% and 1–57%, respectively (Fig. 2),
which is consistent with recent studies on drinking water in Xinjiang
province (Li et al., 2019). PFBA was detected in 100% of water samples
and PFOA was found in 95% of samples. The detection frequencies for
the rest of PFAAs were in the range of 5% to 75%. With the absence of
oceanic transport, atmospheric deposition and oxidation of volatile pre-
cursors are supposed to be the major sources, which subsequently lead
to the high proportion of short chain compounds (Pickard et al., 2018).
The total concentrations and the relative proportions of individual
PFAAs in surface water were shown in Fig. 2. ∑PFAAs levels in surface
water ranged from 0.79 to 15.41 ng L−1, and the highest∑PFAAs level
was found in downstream of Western Tianchi (WTC). The mean con-
centrations of ∑PFCAs and ∑PFSAs were 3.30 ng L−1 and
0.21 ng L−1, respectively. The levels of PFCAs were over 20 magnitudes
higher than PFSAs. This is likely due to the worldwide phase-out of the
manufacturing of PFOS and its precursors and points toward specific
emissions or atmospheric deposition in the study area (UNEP, 2009;
Muller et al., 2011). Although there is a production shift to short-chain
PFSAs leading to increasing levels in the environment (P. Wang et al.,
2016; Z. Wang et al., 2017), the stronger sorption of PFSAs than PFCAs
of equal chain length makes them have less potential for long-range
transport (Higgins and Luthy, 2006).

The mean concentration (3.52 ng L−1) of PFAAs in surface water of
the study area was much lower than that in urbanized and industrial-
ized area of China (P. Wang et al., 2014; Guo et al., 2015; Wan et al.,
2017), while it is slightly higher than that in Canadian Arctic ocean
(0.04–0.25 ng L−1), pristine stream(0.4–1.30 ng L−1) and Alpine stream
(approximately 1 ng L−1), which were only affected by atmospheric
input (Muller et al., 2011; Benskin et al., 2012; Filipovic et al., 2015).
The highest∑PFAAs concentration of 15.41 ng L−1 at TC7 was compa-
rable with reported levels in drinkingwater (mean: 28.49 ng L−1) from
northwestern China (Li et al., 2019) and surface water (17.4 ng L−1)
from the upstream of Pearl river (T. Wang et al., 2016), which were af-
fected by domestic emissions. This indicated a potential pollution of
PFAAs in Tianchi Lake area by local human activities. There are several
commercial skiing resorts in this area, which are expected to lead to el-
evated levels in water during snowmelt seasons (Plassmann et al.,
2010). The PFAAs profile was also different from that in freshwater of
northern China with PFOA and PFOS as the dominant compounds,
which implied a different source in the Tianchi Lake (T. Wang et al.,
2015). The dominance of PFBA may attribute to both oxidation of pre-
cursors during atmospheric transport (X. Wang et al., 2014;
Kirchgeorg et al., 2016) and direct releases from commercial products.
PFBA and its precursors, e.g. short chain fluorotelomer alcohols
(FTOH), have been found in several outdoor consumer products, includ-
ing outdoor textiles, carpets, leathers, baking and sandwich papers,
paper baking forms and ski waxes (Kotthoff et al., 2015).

Differences in the composition of individual PFAAs in surface water
were found among the regions (Fig. 2). TC is the core area of the natural
scenic region with various tourism activities, including hiking, skiing
and boating. The total area of TC is 4.8 km2 with a catchment area of
380 km2, while the WTC only covers an area of 0.03 km2. The ETC is a
plunge pool receiving drainage directly from TC, while the water in
WTC is mainly supplemented by the underground seepage and infiltra-
tion from TC. Because of the geographical isolation, the influence of
tourism activities would differ in TC andWTC. PFBA was the most dom-
inant PFAAs found in surface water of Tianchi Lake (TC) and Eastern
Tianchi pond (ETC) contributing 45–89% to the total concentrations,



Fig. 2. PFAAs levels and composition in water samples.

Fig. 3. PFAAs concentrations and compositions in (a) sediment and (b) soil samples.
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while PFOA was the major compound in WTC with contributions of
20–57%. The PFAAs concentrations in TC and ETC were significantly
higher (Kruskal−Wallis, p = 0.014 b 0.05) than in WTC. Since wet/
dry deposition during the atmospheric transport has been regarded as
the major pathway of PFAAs to remote area, the significant differences
in PFAAs concentrations between the regions would suggest different
influences by local activities.

3.1.2. PFAAs in sediments
PFBA, PFOA and PFHpAwere found in 100% of the sediment samples,

while the levels of PFDS and PFOS in all sediments were below LOD
(Table S6). ∑PFAAs levels in sediments ranged from 0.51 ng g−1 dw
to 2.78 ng g−1 dw. PFBA (0.28–0.47 ng g−1 dw) and PFHxA
(bLOD~0.84 ng g−1 dw) were the dominant compounds with 17%
~82% and 0.5%~67% contributions to the total concentration, respec-
tively. The concentrations of other detectable PFAAs were as follows:
PFOA bLOQ~0.09 ng g−1 dw, PFHpA bLOQ~0.08 ng g−1 dw, PFUnDA
bLOD~0.06 ng g−1 dw, PFPeA bLOD~0.04 ng g−1 dw, PFNA
bLOD~0.03 ng g−1 dw (Fig. 3). PFCAs rather than PFSAs contribute to
the majority of total concentrations in sediment samples. Different
from the results in surface water, long-chain PFAAs with C N 12, includ-
ing PFTrDA, PFTeDA, PFHxDA and PFDoDA, were all detected with var-
ied frequencies in sediments, although at relatively low levels
(bLOD~0.08 ng g−1 dw).

The ∑PFAAs concentrations (mean: 1.37 ng g−1 dw) in sediments
were relatively higher than the observations in lakes of Mongolia-
Xinjiang (0.33 ng g−1 dw) and Qinghai-Tibet regions (0.40 ng g−1

dw), but much lower than urbanized eastern regions of China (Qi
et al., 2016). The concentrations in surface sediments represented anav-
erage condition over recent years (Clara et al., 2009). The higher level
than the regional (Xinjiang-Tibet) average indicated that atmospheric
depositionmight not be the only source and the influence of human ac-
tivities might exist in the study area. The dominance of short chain
PFAAs in sediments was consistent with the observation in surface
water, and this is due to their high mobility during the diffusive pro-
cesses and long-range transport (Clara et al., 2009). The partition coeffi-
cients (Ksd-w, concentrations in sediment over that in water) were
shown in Fig. S2. The highest Ksd-w was obtained for PFHxA. Different
from the result in surface water, PFHxA (C-chain length of 6) was the
most abundant compound in sediments. In general, higher Ksd-w was
observed for PFCAs with longer C-chain. This is consistent with that
long chain compounds are inclined to sorb on particles with higher
partitioning coefficients (Higgins and Luthy, 2006; Ahrens et al.,
2010). However, this correlation was not significant in this study,
which could be attributed to the limited sample size of sediments.
3.1.3. PFAAs in soil
Except for PFDS, 16 determined PFAAs were all found in the 8 soil

samples in Tianchi Nature Reserve (Table S6). The most frequently de-
tected compounds in soil sampleswere PFBA and PFOAwith a detection
frequency of 100%, while the detection frequencies of PFCAs with long-
chain (C N 12) and PFSAs, were relatively lower. The detection frequen-
cies of other PFCAs ranged from 25% to 88% (Table S6). The
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concentrations and relative abundance of the individual PFAAs were
shown in Fig. 3. ∑PFAAs levels in soil samples ranged from 0.23 to
1.86 ng g−1 dw with a mean concentration of 1.07 ng g−1 dw, which
is at the same magnitude in sediment. The concentrations of dominant
compounds, PFBA and PFOA, contributed 5–58% (mean: 35%) and
6–64% (mean: 19%) to total PFAAs, respectively. PFOS were only de-
tected in one site (S1) with a concentration of 0.24 ng g−1 dw, where
a hotel is located nearby. The highest ∑PFAAs level was found in
WS4, while the lowest in S3. Long chain compounds, inducing PFTrDA,
PFTeDA and PFHxDA, were also found in soil samples with relatively
low concentrations. Compared with other studies conducted in China,
the soil concentrations of PFOA in this study area are comparable with
that in north Bohai sea and Huaihe watershed, but much lower than
in Shanghai region (Wang et al., 2011; Meng et al., 2013; T. Wang
et al., 2015). Considering the limited influence by human activities in
the study area, the PFAAs in soils mainly come fromwet/dry deposition
during atmospheric transport. The profile of PFAAs in soil samples was
consistent with that in surface water. Similar with that in surface
water, the levels of PFPeA and PFHxA were significantly correlated
with PFBA (Tables S8 and S9), which suggested the exposure to similar
sources. Short chain PFAAs and their precursors can be effectively dis-
solved in cloud water droplets and scavenged from the atmosphere by
wet deposition (Taniyasu et al., 2013; Scheurer et al., 2017), and the
PFAAs deposited from the atmosphere are mainly stored in soil which
might be further released to the surrounding surface water and sedi-
ments (Filipovic et al., 2015). The sorption potential of PFAAswas deter-
mined by chemicals characteristics and physico-chemcial conditions
(Higgins and Luthy, 2006). The partition coefficient (Ks-w) of individual
PFAAs in soil was shown in Fig. S2. Generally, long-chain PFAAs have
higher accumulation potential than short-chain compounds in soil.
However, non-significant correlation was found between PFAAs and
total organic carbon (Table S9 and Fig. S3).

3.2. Snow deposition of PFAAs

3.2.1. PFAAs levels and composition in snow
Out of the 17 determined PFAAs, 11 PFAAs were detected above the

LOD in fresh snow (Fig. 4). Similar to the results in surface water sam-
ples, 6 PFAAs (PFTrDA, PFTeDA, PFHxDA, PFDoDA, PFOcDA and PFDS)
were all below the LOD (Table S7). PFBA and PFOA were detected in
100% of snow samples and the detection frequencies of other PFCAs
ranged from 40% to 70%, while PFSAs including PFBS, PFHxS and PFOS
were detected in few samples. The concentration of ∑PFAAs in snow
samples ranged from 0.66 to 14.41 ng L−1 (mean: 3.45 ng L−1). The
PFAAs concentrations in snowwere comparablewith that inwater sam-
ples. The snow sample obtained from site TS02had the highest∑PFAAs
Fig. 4. PFAAs levels and comp
concentration with 5 fold of the average level. The concentrations of
PFPeA (0.55 ng L−1), PFHxA (0.38 ng L−1), PFOA (10.43 ng L−1) and
PFOS (1.04 ng L−1) were also observed to be much higher at this sam-
pling site than other regions. PFOS was only detected in site TS02. The
site is located near a hotel and ski resort. This high level and composi-
tion of PFAAs are consistent with the concentrations in water and
snow from urban area and tourist city (Shan et al., 2015; Wang et al.,
2018). The levels at the same magnitude of PFHxA, PFBA, PFOA and
PFOS were also identified in various consumer products including ski
wax, leather, outdoor textiles and baking papers (Kotthoff et al.,
2015), which implies potential pollution by local tourism activities.
Thus, the concentration observed at TS02was excluded from the analy-
sis of snow deposition (Fig. 4).

The most abundant compounds in snow were PFBA and PFOA, and
their total concentration accounts for 90% of ∑PFAAs. The concentra-
tions of PFBA and PFOA in snow samples, except for the one at TS02,
were in the range of 0.34–2.66 ng L−1 and bLOQ~0.54 ng L−1, respec-
tively. Compared to PFCAs, the proportion of PFSAs was relatively
smaller, with an average of 2.6%. Similar with the surface water, long-
chain PFAAs were at a relatively low level. Compared with long-chain
PFAAs, short-chain PFAAs are more susceptible to long-range transport
(P. Wang et al., 2015). PFBA has been found to be uniformly distributed
in the global atmosphere due to its high vapor pressure and transforma-
tion from certain volatile precursors (Bravo et al., 2010; Bhhatarai and
Gramatica, 2011; Wang et al., 2012). The dominance of the shorter
chain compounds may be attributed to the shift in manufacturing to-
ward shorter chain products such as the volatile FTOHs, 4:2 FTOH,
which was measured in Asia (e.g. India), Arctic and global atmosphere
(Li et al., 2011; Gawor et al., 2014; Wong et al., 2018). The significant
correlation between the concentrations of PFBA and PFHxA, and PFOA
and PFNA (Table S8) also proved the formation of these PFAAs by deg-
radation of FTOH precursors (Urs et al., 2008).

The results were compared with those observed in remote regions
and other parts of China, as shown in Table S10. The PFAAs concentra-
tions in snow samples were comparable to the reported concentrations
for Antarctica and Arctic area (Young et al., 2007; Casal et al., 2017), Ti-
betan Mountain (X. Wang et al., 2014), and Swiss/Italian Alps
(Kirchgeorg et al., 2013), while much lower than that in northern
China where the major fluorine manufacturers and cities are located
(Shan et al., 2015), implying the remoteness of this area. By comparing
to the PFAAs profile in Tibetan plateau, the composition in the present
studywas consistent with that in theNamcowith PFBA as the dominant
compound, while different from that in the Muztagata Mountain with
abundances of PFOA and PFOS. The Muztagata Mountain is located at
thewestern TibetanMountain, and theNamco is located at the southern
Tibet, which are suggested to be affected by different sources (X. Wang
osition in snow samples.
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et al., 2014). A recent study has suggested that the PFAAs profiles in
snow and ice core from this area (the northwestern China) could reflect
the interactions of air circulation patterns, and the dominance of short-
and long- chain PFAAs representing different contributions of Indian
Monsoon and Westerly wind (Wang et al., 2019). Taking into account
the dominating level of PFBA precursors in the Indian atmosphere, the
precipitation carried from Indian Monsoon was suggested to be an im-
portant external source in this high plateau area (Li et al., 2011; X.
Wang et al., 2014). However, it is noted that previous study observed
different PFAAs composition with high level of PFOS in deposited
snow from Tianshan Mountain, indicating a strong influence by west-
erly wind (Wang et al., 2019). The trajectory analysis result was
shown in Figs. 1 and S4. Three-layer air mass flow analysis indicated
that cold lower air at 1000 m originated from Europe and warm upper
air originated from central Asia contributing to the snowfall during
the sampling period, which suggested potential long-range transport
sources from these regions. Since the study area is located at the transi-
tion region, the differencesmight be attributed to the variances of circu-
lation patterns in this area. Furthermore, it is reported that climate
change has induced a transformation of the circulation patterns in
Xinjiang region with increasing precipitation caused by northeastern
wind from easterly Japan Sea, and this may alter the accumulation pat-
terns of PFAAs (Shi et al., 2007; Lu et al., 2019).

3.2.2. Relevance of snow deposition to PFAAs environmental distribution
In the absence of oceanic transport of PFAAs, wet deposition of

PFAAs in atmosphere should be the major source in inland Alpine re-
gions. The average concentrations and relative abundances of individual
PFAAs in fresh snow, water, soil and sedimentswere compared to eluci-
date the relevance of snow deposition as a pathway for PFAAs to the
study area.

The partition ratios between average relative abundance of individ-
ual PFAAs in surface water (Kw-p) and soil (Ks-p) to that in snow, and
partition ratios between sediment (Ksd-w) and water were calculated
(Casal et al., 2017). The assessment excluded those compoundswith de-
tectability below 50%. The ratio of individual PFAAs ranged from 0.16 to
8.38, as shown in Table 1, which implied differences in the mobility of
these compounds and the potential contributions of snow deposition.
The Kw-p and Ks-p ratios for PFBA and PFOA were close to 1. The Ksd-
w ratio for PFBA was approximately 0.83, while that for PFOA was
0.25. The unchanged ratios of PFBA were consistent with an efficient
transport from deposited snow to water, soil and sediments because
of their high solubility (Plassmann et al., 2011). The differences between
Ks-p and Ksd-w for PFOA might also imply that long chain PFAAs are
more inclined to sorb on soil, and its diffusive transport from soil to
water and sediment could be limited than short-chain compounds
(Zhen et al., 2013; Filipovic et al., 2015). However, it is noted that soil
characteristics have great influence on the adsorption of PFAAs, and
the occurrence of other pollutants may lead to higher soil adsorption
of short-PFAAs (Guelfo and Higgins, 2013). The relative abundance of
individual PFAAs in snow was highly correlated with that in water and
soil (Spearman's R = 0.943 for water and 0.98 for soil, p = 0.005 b

0.05), while the sediment did not present significant correlation
Table 1
The partition ratios between average relative abundance of individual PFAAs in surface
water (Kw-p) and soil (Ks-p) to that in fresh snow, and the partition ratio between sedi-
ment and water (Ksd-w).

Site PFBA PFPeA PFHxA PFHpA PFOA PFBS

Kw-p All 0.91 2.25 2.67 2.10 0.85 4.00
ETC 1.24 1.49 3.63 3.23 0.16 8.38
TC 1.11 2.01 3.13 2.72 0.42 3.66
WTC 0.47 2.69 1.84 2.36 1.77 2.60

Ks-p 0.62 2.55 3.93 8.27 0.86 2.73
Ksd-w 0.83 0.33 8.61 1.91 0.25 2.04

Note: All denotes all the water samples.
(Spearman's R=0.486, p=0.329 N 0.05; shown in Fig. 5). The correla-
tion supports the transport from snow deposition as a major source of
PFAAs to Alpine lake (Casal et al., 2017). Furthermore, the result might
suggest that the utilization of sediment to represent PFAAs pollution
in an area where atmospheric input is the major pollutant source
would be unreasonable, without consideration of the varied geochemi-
cal behavior of different compounds. The Kw-p and Ks-p ratios for other
short-chain PFAAs, including PFPeA, PFHxA, PFHpA and PFBS, were all
over 1. The relatively high levels in water and soil suggest a different
source for these compounds. Previous studies have observed high
level of neutral volatile polyfluoroalkyl substances in the global and
Asian atmosphere, and the oxidation of these precursors significantly
accounted for the occurrence of short chain PFAAs in remote regions
(Gawor et al., 2014; Xie et al., 2015). Meanwhile, a number of unknown
perfluorinated precursors have been reported to account for 6–56% of
the total concentrations of PFAAs in precipitation, which bears critical
concerns over underestimation of PFAAs mass load from precipitation
in China (Chen et al., 2019). Thus, further investigations are needed to
identify and evaluate the contributions from these precursors, espe-
cially those that have not got much attention.

3.3. Source identification and contributions to PFAAs occurrence

The concentrations of 11 detected PFAAs (∑11PFAAs) in surface
water were assigned to source apportionment analysis by both PCA-
MLR and PMF models to identify the contributions of possible sources.
Predicted value given by twomodels was in a good correlation with ob-
servation (Fig. 6). The concentration obtained in TC7 was much higher
than other sites, which was statistically characterized as outlier. This
sitewasdirectly affected by local activities, and the highest levelwas ex-
cluded from the source analysis. A total of 4 factors were identified by
PCA analysis, which explained 81% of total variance (Table S11). The ro-
tated factor loadings of three major components in the PCA-MLR analy-
sis were shown in Fig. 6 and Table S11, which showed that the first
factor (27.78% of the total variance) had high loads for PFOA, PFNA
and PFUnDA. PFOA and other long chain compounds have been widely
used and observed in consumer products, such as food packaging, car-
pets, leathers and outdoor textiles (Begley et al., 2005; Kotthoff et al.,
2015). Given the lower contribution of PFOA in snow deposition, the
first factor was thus identified as the sources from local tourism activi-
ties. The second factor accounting for 25.20% of total variance was iden-
tifiedwith high loads of short chain compounds, including PFBA, PFPeA,
PFHpA and PFBS. The dominant levels of these PFAAs in snow samples
indicated that the second factor could be considered as the sources
from long-rang transport (Stock et al., 2007; Li et al., 2011). The contri-
butions of the four factors obtained from the PCA analysis were deter-
mined by the MLR analysis. The MLR analysis achieved an excellent
regression for the four factor scores at a stipulatedminimum 95% confi-
dence with r2 reaching 0.821. The results of PCA-MLR showed that the
Fig. 5. Relative abundance of PFAAs in snow and its relevance to PFAAs distribution (Note:
p N 0.05 denotes not significant).



Fig. 6. Factor loadings and predicted source concentrations by PCA-MLR and PMF models.
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first factor (PCA1) contributed 28% to the ∑11PFAAs, and the second
factor (PCA2) contributed 57% to PFAAs in surface water.

The PMF analysis has identified two sources, which was shown in
Fig. 6. The first factor (PMF1) was characterized with high loads of
short chain (C b 8) PFAAs, including PFBA, PFPeA, PFHxA and PFBS,
which is consistent with the second component obtained by PCA-MLR
model, and was deemed to be the source from snow deposition. The
PFOA, PFDA and PFOS were the most dominant compounds in the sec-
ond factor (PMF2) by PMF model, which represented the potential
sources from tourism activities. On the average, the contributions to
∑11PFAAs in surface water of these two factors were 46% for PMF1
and 54% for PMF2, respectively (Fig. 7). Unlike PCA-MLR, PMF analysis
suggested a relatively larger contribution of emission from local tourism
activities. Considering the inherited uncertainty and disadvantages of
the two methods, precise contributions of the sources should be mea-
sured through detail mass flow analysis (Hopke, 2003; Sofowote et al.,
2008). Both PMF and PCA-MLR results demonstrated the significant dif-
ferences between the sources of short- and long-chain PFAAs in the
study area. Since high levels of PFOA have been observed in the site
WT7, indicating a potentially intensive pollution by local human activi-
ties (Stock et al., 2007; Kotthoff et al., 2015), the contributions of two
sources were further analyzed between regions. Significant differences
in the contributions of the sources were found between the main TC
area (as well as ETC) and WTC area. The result showed that local
human activitieswere thedominant source of PFAAs inWTCwith a con-
tribution of 99% (Fig. 7). The source of snow deposition accounted for
67% of total concentrations in TC, while that only contributed to 0.4%
of PFAAs in WTC. This is consistent with the highest PFAAs level ob-
served in WTC area. The differences between the two regions could be
attributed to the effect of size. The area of TC was over 100 times larger
thanWTC. TC received water from snowmelt of Bogda mountain with a
catchment of 480 km2, while the WTC mainly got the water by under-
ground seepage from TC, indicating that less PFAAs input in WTC. The
geographical isolation andmuch smaller sizemadeWTCmore suscepti-
ble to tourism activities than TC.

To further validate the results, the predicted concentrations of the
sources obtained by PMF were compared with the observed concentra-
tions of individual PFAAs. The concentrations of individual PFAAs for
PMF1 was highly correlated with that for snow (Spearman's R =
0.609, p = 0.047 b 0.05, Fig. S5), which further proved that the PMF1
with high loads of PFBA could be characterized as the source of long-
range transport. The correlation analysis also showed that good correla-
tion was found between short chain PFAAs. PFOA, PFNA and PFUnDA
were highly correlated with each other (Table S8). The consistency of
PFAAs compositions between observation and prediction further assert
the results by PCA-MLR and PMF models. On the average, emissions
from local tourism activities accounted for 41% of total levels, while
long-range deposition contributed to 52% in the study area. This result
suggested that both local activities and long-range transport were the
major sources in the nature reserve. However, the atmospheric trans-
port by westerly wind was also characterized with the dominance of
long chain PFAAs (Wang et al., 2019). The identified source PMF2 and
PCA1 with abundant PFOA could be attributed to joint influence of the
local activities and long-rang transport by westerly wind.

Consistent results were obtained by the two receptor models, which
suggested two significant sources with different characteristics. How-
ever, PCA analysis has identified four factors while PMF only found
two. Due to the differences in theoretical approaches, the results from
different receptor models would vary and result in different source
characterization (Zhang et al., 2019). The results of the receptor models
were mainly based on statistical analysis of given datasets, and the lim-
ited sample size would bring uncertainties in this study. The fresh snow



Fig. 7. Contributions of identified factors to ∑PFAAs concentrations and correlation
between predicted values and observed results.
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and water samples were taken only once, which would neglect the sea-
sonal variances leading to reflection of the real condition partially. Sev-
eral determined PFAAswould occur as degradation products of different
precursors, whichwould also affect the source partition analysis results.
To further assess the PFAAs accumulation and transport in the study
area, investigations on specific local emission sources, seasonal precipi-
tation patterns and other perfluorinated precursors are needed.

4. Conclusion

This study systematically analyzed the PFAAs occurrences in surface
water, sediment, soil and fresh snowdeposition in a nature reservewith
increasing intensive tourism activities in Xinjiang, northwestern China.
The PFAAs concentrations (3.38 ng L−1 in surfacewater, 1.06 ng g−1 dw
in soil and 0.53 ng g−1 dw in sediments) in this area were much lower
than urbanized regions. The highest PFAAs level of 15.41 ng L−1 was ob-
served in surface water from western Tianchi pond, indicating a poten-
tial pollution by local human activities. Regional differences were found
in PFAAs levels and compositions betweenmain TC area andWTC pond,
and the intensities of human activities were supposed to be the major
reason. Short chain PFAAs with the dominance of PFBA were abundant
in the environment. The consistency in PFAAs compositions among
water, soil and snow suggested the snow deposition as an important
source. The source analysis by PCA-MLR and PMF models has identified
two major sources, which are characterized by tourism activities with
dominance of PFOA and long-range transport with abundant PFBA.
The contribution of long-range transport was estimated to be 52%,
while that of tourism activities was 41%, indicating a significance of
both sources to PFAAs occurrence. The good correlation between indi-
vidual concentrations of fresh snow and predicted sources for long-
range transport further proved the analysis. Compared with other stud-
ies and the assessment on air mass flow, the long-range transport of
PFAAs in this study area was potentially affected by both westerly
wind and IndianMonsoon.We recommend long-term studies to inves-
tigate the PFAAs deposition processes from different sources under the
changing circulation patterns in the future.
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